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1. Introduction 

Mobile ad-hoc networks (MANETs) are a topic of interest due to the lack of a permanent 

telecommunications infrastructure in some locations where communication is essential.  In a 

MANET, nodes join and leave the communications network dynamically as they enter and leave 

the range of a node already within the network. MANET emulation provides a repeatable, 

scalable environment to assess the impact of network protocols, application software, and 

environmental effects on network performance.  Network simulations lack the fidelity of 

emulation and do not run actual application and network stack software, while field exercises 

using production radios are often prohibitively expensive, time consuming, or difficult to 

coordinate. 

A key to developing valuable MANET emulation experiments is defining a realistic mobility 

scenario.  Random models, such as random walk and random waypoint, are simple to implement 

and analyze, but they do not represent realistic node movements.  Researchers need a tool for 

developing mobility scenarios based on typical troop movement patterns. 

Researchers use the U.S. Army Research Laboratory (ARL) Topodef tool (1) to define mobility 

scenarios for MANET experiments. Topodef is a graphical tool for custom-defining a network 

topology. The original implementation was written in the Python programming language and 

uses Tkinter to create graphical user interfaces (GUIs) and display animated scenarios (1).  The 

tool benefits network science by speeding the creation of new scenarios and editing of existing 

scenarios that can be used in a variety of MANET experiments.  

2. Design Goals 

Although the original Topodef application improved the scenario design process from previous 

tools, several researchers noted room for additional improvement.  Editing a scenario required 

the researcher to position nodes for each time step of the scenario by clicking on the nodes and 

individually dragging them to the desired positions.  The time required to edit a scenario quickly 

increased with the number of nodes and the length of the scenario.  This was the primary 

motivation for redesigning the Topodef tool. 

In addition to improving usability, the new Topodef GUI needed to be more maintainable than 

the previous version.  The original software had a high degree of internal coupling, making 

modifications and extension extremely difficult.  Changes to class files usually meant having to 

update others.  The new Topodef GUI was designed with modularity in mind, allowing for the 

addition or replacement of individual pieces of code, with minimal restructuring.  For example, 
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the ability to have different graphical interfaces for the tool are facilitated by divorcing the GUI 

code from the underlying objects and data structures using the Model-View-Controller (MVC) 

design pattern.   

3. Inspiration 

The core concepts for the controls of the new Topodef GUI were inspired by computer games, 

namely, games in the real-time strategy (RTS) genre. In this genre, the player controls large 

numbers of individual units and must command those units to execute arbitrarily complex tactics 

to accomplish some in-game objective (e.g., destroy the opponent’s army).  Decades of trial and 

error have fine-tuned the controls for these games into a fairly consistent pattern: the player 

selects units (individually or in a group) with a left mouse click, and then gives the selected 

unit(s) a destination by clicking again on the main screen area.  If the player wishes, they can 

also queue up a number of waypoints for the selected unit(s), where the unit progresses from 

their current location to the first waypoint, then the second, and so on.  Additional controls are 

afforded to the player through buttons on the periphery of the screen, which allow the player to 

tell the selected unit to perform more complex, context-sensitive actions.  As a convenience, 

these action buttons usually have an assigned key on the keyboard so they can be invoked 

without forcing the player to mouse over away from the main screen area and click them.  

Figure 1 shows a screenshot from the RTS game Medieval II: Total War (2).  
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Figure 1.  In Medieval II: Total War, battles are fought in an RTS environment, where the player must control 

hundreds of units at once (2). 

The new Topodef borrows elements from the RTS control pattern (3) because these elements 

allow for a high degree of control (so that players may execute strategies that require precise 

movement) while keeping the number of actions to a minimum (allowing the player to execute 

more commands in a given amount of time).  This minimalistic yet powerful input pattern has 

the added benefit of being intuitive, especially to anyone who has some experience with 

computer games.  Given the application is meant for research use, we placed a higher value on 

precision and flexibility than the ability to perform actions quickly.   

4. Design 

After we decided on the general approach to the user interface, we compiled and prioritized a list 

of features for the application.  At the highest priority level were “key features,” such as linear 

node movement, nonlinear node movement, creating new nodes, adjusting existing paths, and 

executing the defined scenarios (i.e., to have the nodes move along their paths).  The next 

priority level was “non-essential features,” such as deleting nodes and paths, adjusting the 



 

4 

amount of time to travel along a path, having nodes wait in one place for a set amount of time, 

and finally, closing a path circuit on which nodes would circle indefinitely.  The final category 

included features was could be included in later versions of the GUI.  Ideally, the final program 

would be easy to extend and modify as new features were needed.  This final list was compiled 

in order to influence the design strategy, i.e., so we would keep in mind that a goal was to be able 

to add the features without the need for excessive code restructuring.  Some examples from this 

list are dynamic pathing (where nodes would create paths on the fly, reacting to or following the 

nodes around them), an undo/redo feature, and defining paths for multiple nodes at once.  Given 

these features, a mockup was created to visually demonstrate the most basic functionality of the 

planned tool (figure 2). 

 

Figure 2.  An initial mockup of the Topodef user interface. 

The key innovation resulting from the design process is an emphasis on paths—nodes move 

along researcher-designed paths as though moving down a conveyor belt.  Giving paths an 

existence independent of the nodes that travel along them not only makes their creation easier, 

but also allows nodes to be added to a path retroactively, as well as allows multiple paths to 

merge into one.  This facilitates the rapid definition of complex scenarios (e.g., creating “patrol” 

circuits that loop indefinitely) and has the added benefit of easy visualization of node movement 

even before the scenario is running.   

With the functional design idea in mind, it was possible to begin designing the class structure.  

We restructured the new application from the ground up implementing the MVC design pattern 

(4, 5).  The goal was to decouple the user interface from the business model classes.  This 

decoupled approach would provide a consistent application program interface (API) regardless 

of the user interface.   Whether the view is a GUI or a command-line interface, it can depend on 
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the controller to handle the basic operations of object creation, maintenance, traversal, and 

deletion, without giving it any information about itself.  

Figure 3 illustrates the classes required to implement the revised Topodef GUI.  This class 

diagram does not list classes implementing other features of Topodef, such as path-loss models, 

file import and export, and terrain models.  The reasons for this are detailed in section 10. 

 

Figure 3.  Topodef class model. 

5. Model 

The code in the model defines the objects that are at the core of the functionality of the software.  

The RadioNode object fills the roles of the Node object in the existing Topodef application; each 

instance represents an entity in the field holding one or more radios.  These are the objects that 
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actually move around when a scenario is executed.  The MapObject class is the base template for 

objects that deal with directing the RadioNodes.  RadioNodes are the only element in the model 

(besides Point) that is not an extension of MapObject.  RadioNodes are placed on MapObjects, 

and during the execution of a scenario, the MapObject a node is currently “riding on” will tell the 

node where to go for the next update interval.   

Path is an abstract class that defines some functions and constructors that should be common to 

all Path objects (namely, functions that get or set the WayPoint at the beginning or end of the 

path instance).  The instantiable versions of Path come in two flavors: straight and curved.  A 

StraightPath calculates a dx and dy upon creation, which are used to update any nodes on it by 

those amounts every frame of animation.  CurvedPaths are slightly more complex.  In order to 

simulate smooth curves, CurvedPaths are actually comprised of a series of small line segments 

between PathPoints; in the current GUI implementation, PathPoints are created every time the 

mouse listener registers the mouse has been dragged to a new location when the user is in the 

Path Creation state.  In essence, CurvedPaths are just a linked list of PathPoints, and travel along 

one involves hoping from one PathPoint to the next until the correct distance has been traveled 

for that time interval. 

A special Point class was written for the new Topodef.  This may seem redundant due to the 

existing Point class in Java’s libraries, but the purpose of the new Point class was primarily to 

allow for a shift to three-dimensional modeling (Java’s built in point only tracks two 

dimensions).  Additionally the Point class in this project contains a longitude and latitude instead 

of an x and y coordinate.  Point serves as the superclass for both the WayPoint and PathPoint 

classes.  There was some debate during the design process regarding whether these subclasses 

should extend the Point class, or merely contain and instance of a Point object.  Extension was 

chosen because on a conceptual level, WayPoint and PathPoint at their most basic level are 

global positioning system (GPS) coordinates.  It made the most sense conceptually to have these 

classes extend Point because they are Points. 

6. Controller 

The controller maintains the data structures that are holding all of the currently active model 

members.  Its role is to translate commands from the View into actions that the Model will 

perform.  The controller has methods that can be called by a View that will modify a member of, 

add to, or remove a member of the data structure holding the MapObjects and RadioNodes.  This 

role in the chain of command allows for the View to focus on dealing with user input/output 

(I/O). 
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7. View 

The view receives user input and relays that input to the controller.  The view also reflects 

changes in the model state as meaningful output in the user display.  The current view 

implementation creates a graphical panel with which the user interacts and has custom buttons-

actions and input-panels to provide a streamlined interface.  We have designed it with 

extensibility in mind, relying heavily on Java reflection to allow for the quick addition of new 

buttons and MapObjects.  For example, in order to add a new button to the toolbar, developers 

create small class file (that defines an icon location, tooltip, and method to call upon the button 

being activated), and then adds the name of the class to a String array in the main View class.    

8. Results 

The resulting product in its current working state is shown in figure 4a and b.  The small circles 

represent waypoints, with the gradient lines between them representing paths.  The gradient on 

the paths indicates which direction nodes will move when on that path (nodes move from light to 

dark).  The larger labeled spheres represent radio nodes, with each color representing a different 

platform type (such as tank, high mobility multipurpose wheeled vehicle [HMMWV], or 

dismount).  The representation of nodes and waypoints can be any image file or custom color 

selected by the user.  Below the display area is the toolbar, which contains the buttons used for 

scenario editing and playback control.  From left to right, the components of the toolbar are the 

edit/execute toggle, background toggle, create nodes button, create path button, edit path button, 

create randomly moving nodes button, split path button, delete button, configuration button, and 

the information display.  The toolbar is described in more detail in section 9.  Actions that 

require additional information (e.g., creating nodes) will prompt the user with a dialog box when 

their associated button is activated.  Most buttons have an associated hotkey to speed the entry of 

commands for more experienced users.  In order to aid in new users understanding of how their 

input affects the model, almost all actions are accompanied with one or more of the following:  

• a preview of what will happen is presented if the user clicks the mouse in the main panel,  

• a dialog box appears after a button is pressed requesting more information from the user 

before any action is taken, or  

• text is written to the display on the toolbar explicitly stating what action was just 

performed. 
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(a) 

 
(b) 

Figure 4.  (a) Map image with node overlay in Topodef GUI and (b) nodes and paths in Topodef GUI. 

The new Topodef GUI allows for quicker generation of topology scenarios than its predecessor.  

The example in figure 4 was created in a couple of minutes, despite advanced node behavior 

spanning hundreds of time steps.  Creating an analogous scenario in the current version of 

Topodef would take several hours.   

Path creation was made to be simple and robust.  Users enter the path creation state by pressing 

the corresponding button on the toolbar.  If no waypoint is selected, the user is prompted to place 

a waypoint with a hollowed-out icon (figure 5a).  If a waypoint is selected, upon entering the 
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path creation state the user can immediate place a path leading away from that waypoint.  A 

yellow line is drawn between the waypoint and the cursor showing the user the path that will be 

created if they click the mouse (figure 5b).  By clicking, the user creates a waypoint at the 

location of the cursor, and then a path is placed between the two points (figure 5c).  

    
 (a) (b) 

    
 (c) (d) 

    
 (e) (f) 

 
(g) 

Figures 5.  (a) Placing a waypoint, (b) creating a straight path, (c) a created path, (d) creating a curved path, (e) a 

created curved path, (f) the create nodes dialog, and (g) a created node. 
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Alternatively, after entering the path creation mode, the user can click on the selected waypoint, 

and—while holding the mouse button—drag the mouse to draw a custom curved path 

(figure 5d).  By releasing the mouse button, the path is ended and a waypoint is placed 

(figure 5e).  After creating either kind of path, the user remains in the path creation state, 

allowing for rapid extension of paths. 

Users can place nodes on a waypoint by selecting the waypoint, then pressing the create node 

button.  They are then presented with the dialog shown in figure 5f.  This dialog box prompts the 

user to enter the kind of platform the node will represent, the kinds of radios the node will hold, 

what kind of propagation model the radio will operate within, and how many nodes to create 

with the entered specifications.  When the user hits OK, the node with the entered properties is 

placed on the selected waypoint (figure 5g).  

If the user ends a path (clicking for a straight path or releasing the mouse button for a curved 

one) on another waypoint, a merger is created.  During execution, the node will travel along the 

newly created path, and upon reaching the end waypoint, will continue on the path leading away 

from that waypoint.  This intuitive feature allows for the creation of circuits that will execute 

until the end of the scenario or the merging of two or more paths into one.  

At any point during editing, a waypoint can be moved by simply clicking on it, then holding and 

dragging the mouse.  The waypoint and connected paths update in real time as the user makes 

adjustments, so that the user can see the affect of the change immediately.  Waypoints with 

nodes on them can also be moved with no issue.  It must be noted that waypoints cannot be 

moved if the user is creating a path or attempting to place a new node, since clicking on a 

waypoint in these cases will result in different actions. 

9. Toolbar 

The new version of Topodef is implemented using the Java programming language and includes 

a toolbar at the bottom of the main window.  A notable feature of the Java toolbar widget is that 

it can be dragged away from the frame containing it and exist independent of the frame.  

Toolbars may also be repositioned along any other border of the program’s frame, but it is 

recommended to only bind the toolbar to the top or bottom of the frame due to the horizontal text 

display. 

9.1 Execution/Edit Toggle (E) 

This button starts and stops execution of the designed scenario.  If the program is in execution 

mode, no changes can be made to the scenario and the nodes move along their paths until they 

reach a waypoint that doesn’t have a path leading away.  Execution can be started at anytime 
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during editing and can be stopped at any point during the playback as well.  The hotkey for this 

button is E. 

9.2 Background Toggle (B) 

This button essentially lays an image (named “map.png” in the “images” package) to be used as 

a background instead of the normal black or gray.  The advantage is scenarios can be created to 

follow real-world geography and take on a more definite relevance.  The advantage of leaving 

the background off is it is much easier to see the already created paths and waypoints against the 

darker, uniform backgrounds.  The background can be toggled on or off at any point of editing or 

execution.  The hotkey for this button is B. 

9.3 New Node (N) 

The action associated with this button behaves differently based on the current state of the 

program.  If nothing or a path is selected, pressing this button or hitting its associated hotkey will 

allow the user to place a new node anywhere on the screen.  This is accomplished by first 

creating a waypoint at the location selected, then placing a node on top of that waypoint.  Once 

the waypoint and node have been placed, the state of the program switches to path creation; 

creating a new node in this manner is the simplest way to create new paths.  It is also worth 

noting that the user is clued into this functionality via a hollowed waypoint icon following the 

mouse cursor around the main panel. 

The action performed is different if a waypoint is selected when the button or hotkey is pressed.  

In this situation, a dialog box prompts the user to enter the number of nodes they would like to 

add to this waypoint.  This feature allows researchers to place multiple nodes on top of one point, 

so they travel exactly together (simulating multiple radios in the same vehicle, for example).  

The default value for this dialog box is 0, so that if the user mistakenly brought it up, it can be 

removed quickly without any repercussions in the model.  The hotkey for this button is N. 

9.4 Create Path (P) 

If the user has selected a waypoint without a path leading away from it (denoted by its being 

red), then they can trigger this action to begin adding new paths.  As mentioned before, once the 

user enters the path creation state, a preview of the straight path is drawn between the selected 

waypoint and the mouse pointer.  A click will result in the demonstrated path, whereas a click 

and drag originating from the selected waypoint will result in a curved path exactly mimicking 

the user’s mouse movements up until the point of release.  If already in this path creation state, 

triggering the action again will return the user to the generic editing state.  The hotkey for this 

button is P. 

9.5 Edit Time (T) 

This action allows users to change the amount of time to traverse a path or wait at a waypoint.  

To accomplish this, the user just has to select the object of interest, and then trigger this action.  
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A dialog box will appear prompting for the new amount of time to traverse the selected object (to 

be input in milliseconds).  The default value for this input box is the current amount of time for 

traversal, so any accidental trigger of the edit time action is less likely to adversely affect the 

model.  They hotkey for this button is T. 

9.6 Delete Selected (Del) 

The final button on the toolbar, this button removes the selected object from the model.  The 

current implementation will start by removing the selected object, and then recursively remove 

any waypoints and paths that proceed from the deleted piece.  This recursive deleting stops once 

the end of a path is reached, a waypoint is found on the path that has a node sitting on it, or a 

waypoint is found that has multiple incoming paths.  This recursive algorithm was implemented 

because any path that no longer had a node that would traverse it becomes irrelevant.  The 

hotkey for this button is the Delete key. 

9.7 Text Display 

The text display shows contextually appropriate information to the user.  Its default output is to 

show information about the currently selected object (time to traverse, position, etc.), but it is 

also used to explain input formatting errors or explicitly state what action the user has just 

performed.   

9.8 Escape Key 

The escape key is also used to perform cancellation actions.  If the user is creating a new node or 

a new path and wishes to return to the generic editing mode, the user can press the universal 

escape in addition to the dedicated path/node actions.  The escape key will also stop an executing 

scenario and return to editing. 

10. Future Work 

The Topodef GUI is a work in progress.  Some of the features currently in development are the 

ability to save and load scenarios, and generate mobility model data files for use in network 

science experiments.  These features will greatly enhance the software’s usefulness to 

researchers.   

The effort to redesign the scenario editing portion of Topodef was done without the constraints 

imposed by the existing software in an effort to explore as many options as possible.  For that 

reason, the GUI described in this report does not integrate with the existing Topodef application.  

A separate effort is currently underway to redesign the architecture of Topodef to integrate it 

with the GUI updates and to improve performance of path-loss calculations used to visualize 

network topologies.  Another effort underway is the integration of NetDMF, which is a 
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mechanism for storing large data sets developed as a part of the Mobile Network Modeling 

Institute (6).  The revised Topodef will also include support for the automation efforts currently 

underway in ARL’s Wireless Emulation Laboratory.  
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